B-Factory Constraints on Low-Mass Dark Matter

Yury Kolomensky

LBNL/UC Berkeley

For the BABAR Collaboration

TAUP 2013

September 11, 2013

Direct Searches for Low-Mass New Physics

- Models inspired by astrophysical and astro-particle observations
 - Strongest hint: INTEGRAL 511 keV anomaly
 - Also positron, γ-ray excess in PAMELA, FERMI
 - Hints of low-mass direct DM detection (DAMA, CoGeNT, CRESST)
 - Typical models: low-mass (<10 GeV) gauge bosons and/or scalars (Higgs)

Fig. 1. Raw spectrum and background model components.

Examples

- Models with low-mass dark matter and/or gauge bosons
 - E.g. "Dark Sector"
- NMSSM models with light CP-odd Higgs
 - Solve fine-tuning problems in MSSM
 - CP-odd Higgs, A⁰, below 2m_b is not constrained by LEP
 - Targe BR for $\Upsilon \rightarrow \gamma A^0$ possible
- Accessible at B-Factories in e⁺e⁻ annihilation or bottomonium decays
 - Subject of a comprehensive campaign of searches in BaBar since 2008
 - 7 publications, 2 prelim. results, several ongoing analyses

Non-singlet fraction $(\cos \theta_A)$

$$m_{A0}$$
<2 m_{τ}
2 m_{τ} < m_{A0} <7.5 GeV
7.5 GeV< m_{A0} <8.8 GeV
8.8 GeV< m_{A0} <9.2 GeV

Upsilon Resonances

Electron-Positron collider: $e^+e^- \rightarrow \gamma^* \rightarrow \Upsilon(nS)$

Upsilon Resonances

• Electron-Positron collider: $e^+e^- \rightarrow \gamma^* \rightarrow \Upsilon(nS)$

For any bottomonium process $BF_{nS} = \Gamma_{nS}/\Gamma_{tot} >> BF_{4S}$, n=1,2,3Significantly better sensitivity to direct production of light degrees of freedom @ narrow resonances. Focus of BaBar's Run7 (2008)

BaBar Experiment

BaBar dataset: ~520 fb⁻¹ total collected luminosity

- \sim 470M Y(4S) decays
- ~120M Y(3S) decays
- ~100M Y(2S) decays

Searches for Dark Matter Production

- Generic model: DM particle χ with $m_{\chi} < m_{\Upsilon}/2$
 - □ Plus a new scalar (A⁰) or vector (A') particle to mediate s-channel annihilation
 - \mathfrak{P} On-shell: $m_\chi < m_A/2 < m_\Upsilon/2$: resonant decays of Υ
 - \mathfrak{S} Off-shell (m_{χ}<m_{χ}/2<m_A/2): non-resonant decays
- Signatures and predicted rates:
 - □ Invisible decays of Y with BF >> BF(Y \rightarrow vv)
 - 𝔻 BF(Y→χχ)~4×10⁻⁴-2×10⁻³ [McElrath, PRD **72**, 103508 (2005)]
 - □ Radiative decays $\Upsilon \rightarrow \gamma$ +invisible
 - 𝔻 BF(Υ→γχχ)~10⁻⁵-10⁻⁴ [Yeghiyan, PRD 80, 115019 (2009)]

Y(15)→invisible: Analysis Strategy

Leverage the charged dipion transition to the Y(1S) (4.48%) to suppress background

$$m_{recoil}^2 = s + m_{\pi\pi}^2 - 2 E_{\pi\pi} \sqrt{s}$$

Additional non-peaking backgrounds from $e^+e^- \rightarrow \gamma^* \gamma^* \rightarrow e^+e^- \pi^+ \pi^-$ not included

Y(15)→invisible: Signal Extraction

Maximum likelihood fit to
2-track "invisible" sample
Non-peaking background:

✓ Float all parameters and
yield
Peaking Component:
✓ Fix shape, float yield
Contains peaking
background and signal

BR($\Upsilon(1S) \rightarrow \text{invisible}$) = [-1.6 ± 1.4 (stat.) ± 1.6 (syst.)]×10⁻⁴ BR($\Upsilon(1S) \rightarrow \text{invisible}$) < 3.0×10⁻⁴ @ 90% C.L. [BaBar PRL**103**, 251801 (2009)]

BR($\Upsilon(1S)$)→invisible) < 2.5×10⁻³ @ 90% C.L. [Belle PRL98, 132001 (2007)]

→ Strong constraint on models with DM below 4.5 GeV

$\Upsilon(1S) \rightarrow \gamma + \text{invisible}$

Search for decay chain $\Upsilon(2S) \rightarrow \pi^+\pi^-\Upsilon(1S)$, $\Upsilon(1S) \rightarrow \gamma + \text{invisible}$

Resonant (invisible=Higgs) or non-resonant (invisible= $\chi\chi$, e.g. light dark matter)

Identify the event by two low-momentum pions from $\Upsilon(1S) \rightarrow \pi^+\pi^-$ transition, a single energetic photon, and large missing energy

Two key kinematic variables: missing mass $M_{\rm X}^2$, and dipion recoil mass

$$E_{\gamma}^* = \frac{M_{Y(1S)}^2 - M_X^2}{2M_{Y(1S)}}$$

$$E_{\rm Y}^* = \frac{M_{\rm Y(1S)}^2 - M_{\rm X}^2}{2M_{\rm Y(1S)}}$$

$$m_{recoil}^2 = s + m_{\pi\pi}^2 - 2\sqrt{s}E_{\pi\pi}$$

Search for excess of events over background as a function of missing mass

Example: $\Upsilon(2S) \rightarrow \pi^{+}\pi^{-}\Upsilon(1S)$, $\Upsilon(1S) \rightarrow \gamma A^{0}$, $A^{0} \rightarrow \text{invisible}$

Most significant peak in missing mass: m_{A0} =7.58 GeV, 2.0 σ significance

>30% probability to observe a peak of this significance *anywhere* in m_{A0}<9.2 GeV range

PRL **107**, 021804 (2011)

$\Upsilon(1S) \rightarrow \gamma$ +invisible Limits

Best limits on radiative decays of $\Upsilon(1S)$ to invisible final states PRL **107**, 021804 (2011)

Gauge Bosons in the "Dark Sector"

Dark matter particles in ~TeV range, but new gauge bosons in ~GeV range

Coupling to leptons due to small mixing between SM and DS

New gauge bosons decay to lepton pairs, anti-proton production forbidden by kinematics or suppressed → explains PAMELA/ATIC features

Search for low-mass states in e⁺e⁻ annihilation @ B-Factories

N. Arkani-Hamed et al PRD 79, 015014 (2009)

Direct Search for Dark Sector

Look for e⁺e⁻ \rightarrow l⁺l⁻l⁺l⁻ final states (4e, 2e2 μ ,4 μ) as a function of two-lepton mass

Full BaBar dataset (~540 fb⁻¹)

$$\sigma(e^+e^- \to W'W' \to l^+l^-l'^+l'^-) < (25-60) \text{ ab}$$

Some of the smallest cross section ULs measured @ B-Factories

Search for Dark Higgs

- Extension of the dark sector models: dark Higgs
 - Mass generation in dark sector
 - Mass can be low
 - Detect by Higgs-strahlung process e+e-→ A'h'
 - Decays to A' pairs
 - Multi-particle (multi-lepton) final state
 - © Clean detection, virtually no QED background

Dark Higgs Search

Focus on direct decay topology: $e^+e^- \rightarrow A'h'$; $h' \rightarrow A'A'$ Look for A' decays to a pair of oppositely-charged tracks, or to invisible final state $(A' \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-, X)$

Require same mass for each pair

6 events selected (18 combinations)

Consistent with background estimates

Dark Higgs Limits

Substantial improvement over previous limits. Constrain model space

Higgs Searches: $e^+e^- \rightarrow \Upsilon(2S,3S) \rightarrow \gamma A^0$

- ✓ $A^0 \rightarrow \mu^+\mu^-$, PRL**103**, 081803 (2009)
- \wedge A⁰ $\rightarrow \tau^+\tau^-$, PRL**103**, 181801 (2009)
- \checkmark A⁰ → hadrons, PRL**107**, 221803 (2011)
- ✓ A^0 →invisible, arXiv:0808.0017

- (Pseudo)scalar $A^0 \rightarrow \mu^+\mu^-, \tau^+\tau^-,$ hadrons
- Partially or fully-reconstructed final state: ≥2 charged tracks, 1 photon

 Look for A⁰ decays as a narrow peak in photon energy or A⁰ invariant mass

Also can be interpreted as search for a vector gauge boson ("dark photon") in $e^+e^- \rightarrow \gamma A$ '

Diagrams courtesy R. Essig et al.

BABAR Higgs Coupling Limits

Comprehensive limits on low-mass (NMSSM etc.) Higgs Also place significant constraints on other models, e.g. axion-like states, dark photons

Dark Photon Limits

Limit obtained by reinterpreting the $\Upsilon(2S,3S) \rightarrow \gamma A^0$, $A^0 \rightarrow \mu^+\mu^-$ measurements¹⁾

Summary and Outlook

- B Factories continue to provide significant constraints on dark-matter motivated new physics models
 - Direct searches: unique sensitivity to low-mass new physics in high-statistics datasets
- Belle-II will increase statistics by ~100
 - Combined with LHC and direct detection searches, these measurements will provide unique information on the dynamics and flavor structure of new physics

Backup

BaBar Detector

Belle Detector

